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We consider the photoacoustic effect for multiply scattered light in a random medium. Within the accuracy
of the diffusion approximation to the radiative transport equation, we present a general analysis of the sensi-
tivity of a photoacoustic wave to the presence of one or more small absorbing objects. Applications to tumor
detection by photoacoustic imaging are suggested.
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I. INTRODUCTION

The photoacoustic effect refers to the generation of acous-
tic waves due to the interaction of light with an absorbing
medium �1�. It is well known that the emitted acoustic waves
carry information about the medium �2,3�. This principle has
been exploited in a variety of biomedical imaging modalities
which combine the spectroscopic sensitivity of optical meth-
ods with the spatial resolution of ultrasonic imaging �4�. Two
forms of photoacoustic imaging are usually distinguished.
Direct imaging employs a focused ultrasound detector for
image formation. Tomographic imaging utilizes an unfo-
cused ultrasound detector and an inverse scattering method is
used to reconstruct images of the optical properties of the
medium.

The theory of the photoacoustic effect begins with a
model for the propagation of electromagnetic waves in an
absorbing medium. The most general such model is based on
the Maxwell equations for a dielectric with a complex-
valued permittivity. Alternatively, a description based on the
radiative transport equation �RTE� or the diffusion approxi-
mation �DA� to the RTE may be employed. Such an ap-
proach is valid for a random medium in which multiple scat-
tering of light occurs. Upon absorption of light, the medium
undergoes local heating and thermal expansion. Typically in
a fluid, a linear relationship between mass density and tem-
perature is assumed, although nonlinear models have also
been considered �5�. The mass density and the velocity field
in the fluid are further related by the Navier-Stokes equation,
which can be linearized to describe the propagation of small-
amplitude pressure waves.

The propagation of photoacoustic waves is governed by
the acoustic wave equation with a source term which is pro-
portional to the time derivative of the intensity of the optical
field. In an infinite nonscattering medium containing a
spherical absorber, the pressure may be obtained explicitly
�6–9�. The solution to this model problem is of fundamental
interest and may be used to estimate the resolution of a pho-
toacoustic imaging experiment in a transparent medium.
However, the analysis must be modified if multiple scattering
of light is to be accounted for. In this paper, we consider the
related problem of the photoacoustic effect in a random me-
dium containing one or more small absorbing objects. The
propagation of light is described by the DA to the RTE. The
calculations we report are exact and account for effects due
to reflection of the photoacoustic wave at the boundary of the

medium. We apply our results to the problem of estimating
the minimum detectable size of a breast tumor in photoa-
coustic imaging.

The remainder of this paper is organized as follows. In
Sec. II, the equations governing the photoacoustic effect in a
random medium are derived. Then, in Sec. III, the point-
absorber model is described. In Sec. IV, the theory of the
photoacoustic effect for a small absorbing object is consid-
ered for the cases of infinite and semi-infinite media. Finally,
the theory for a collection of absorbing objects is presented
in Sec. V. Our conclusions are formulated in Sec. VI.

II. PHOTOACOUSTIC EFFECT

In this section we derive the basic equations governing
the photoacoustic effect in a random medium. We begin by
considering the propagation of light in a volume � which
contains a fluid consisting of a suspension of scattering par-
ticles. The specific intensity I�r , ŝ , t� at the point r�� in the
direction ŝ at time t is assumed to obey the RTE �10�,

1

c

�I

�t
+ ŝ · �I + �aI − LI = S , �1�

where

LI�r, ŝ,t� = �s� �f�ŝ�, ŝ�I�r, ŝ�,t� − f�ŝ, ŝ��I�r, ŝ,t��d2s�.

�2�

Here c denotes the speed of light in the medium, �a and �s
are the absorption and scattering coefficients, respectively,
and S is the power density of the source. In general, we will
allow �a to be position dependent and will assume that �s is
constant throughout �. The phase function f�ŝ , ŝ�� is normal-
ized so that �f�ŝ , ŝ��d2s�=1 for all ŝ and is assumed to de-
pend only upon the angle between ŝ and ŝ�, corresponding to
scattering by spherically symmetric particles. The specific
intensity satisfies a boundary condition of the form

I�r, ŝ� = 0, n̂ · ŝ � 0, r � �� , �3�

where n̂ is the outward unit normal to ��. Thus no light
enters � except due to the source. We will also introduce the
angularly averaged specific intensity defined by

Ī�r,t� =
1

4�
� I�r, ŝ,t�d2s . �4�
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Absorption of light leads to heat transfer by thermal dif-
fusion. The temperature T obeys the diffusion equation

�Cp
�T

�t
− ��2T = �aĪ , �5�

where � is the mass density, Cp is the constant-pressure heat
capacity per unit mass, and � is the thermal conductivity.
Upon heating, the medium undergoes thermal expansion
with subsequent generation of a pressure wave. The mass
density thus satisfies the continuity equation

��

�t
+ � · ��v� = ��

�T

�t
, �6�

where � is the coefficient of volume thermal expansion. The
velocity field v is taken to obey the Navier-Stokes equation

�
�v

�t
+ ��v · ��v = − �p + ��2v + �	 +

1

3
�� � �� · v� ,

�7�

where p is the pressure, � is the shear viscosity, and 	 is the
bulk viscosity.

We suppose that the light incident on the medium is pro-
duced by a pulsed source and that the duration of the pulse is
short in comparison to the time scale of thermal diffusion. In
this situation, we may neglect the spatial dependence of T
and thus, using Eq. �5�, we see that Eq. �6� becomes

��

�t
+ � · ��v� =

�

Cp
�aĪ . �8�

We can now derive the equation obeyed by small-amplitude
photoacoustic waves. First, we note that if the source power
is sufficiently small �11�, we can write the density and pres-
sure in the form

p = p0 + 
p , �9�

� = �0 + 
� , �10�

where p0 ,�0 are the equilibrium density and pressure before
the arrival of the pulse and 
p ,
� are fluctuations in the
density and pressure with 
p�p0 and 
���0. Next, we
linearize Eqs. �7� and �8� about constant p0 and �0,

�0
�v

�t
= − �
p + ��2v + �	 +

1

3
�� � �� · v� , �11�

�
�

�t
+ �0 � · v =

��a

Cp
Ī . �12�

Using the above result, it is possible to eliminate the velocity
field and obtain a single equation involving only 
p and 
�,

�2
�

�t2 = �2
p + �	 +
4

3
��� 1

�0

�

�t
�2
� −

��a

�0Cp
�2Ī� +

��a

Cp

� Ī

�t
.

�13�

Finally, we use the relation 
p=cs
2
�, where cs is the speed

of sound and obtain the wave equation for the pressure

1

cs
2

�2p

�t2 = �2p +
	 + 4

3�

�0cs
2 � �

�t
�2p − ��a�

2Ī� +
��a

cs
2

� Ī

�t
.

�14�

Here we have introduced the Gruneisen constant �
=�cs

2 /Cp, which is a measure of the efficiency of the con-
version of heat to pressure. Note that �	0.1 in water at
room temperature.

For simplicity, we restrict our attention to the case of
time-harmonic fields with a e−i�t time dependence. The gen-
eral case can be handled by Fourier superposition. The time-
independent pressure then satisfies the reduced wave equa-
tion

�1 + i
�

�0
��2p + k0

2p =
i���a

cs
2 Ī −

��a

�0
�2Ī , �15�

where the wave number k0=� /cs and

�0 =
�0cs

2

	 + 4
3�

. �16�

The frequency �0 determines the scale over which viscous
attenuation of the pressure wave occurs. Since ���0 for
most cases of practical interest, we will neglect effects due to
viscosity �this point is discussed further in Sec. IV B� and
thus Eq. �15� becomes

�2p + k0
2p =

i���a

cs
2 Ī . �17�

The solution to Eq. �17� is given by

p�r� =
i��

cs
2 � d3r�G�r,r��Ī�r���a�r�� , �18�

where the speed of sound is assumed to be constant and the
Green’s function G obeys the equation

�2G�r,r�� + k0
2G�r,r�� = 
�r − r�� . �19�

The Green’s function also obeys appropriate boundary con-
ditions.

If the incident optical field is generated by a point source
at r1 pointing in the direction ŝ1, then the angularly averaged
specific intensity is given by

Ī�r� =
S0

4�
� d2sG�r, ŝ; r1, ŝ1� , �20�

where S0 is the source power. Here G is the Green’s function
for the time-independent RTE,

ŝ · �G�r, ŝ; r�, ŝ�� + ��a − i�/c�G�r, ŝ; r�, ŝ��

− LG�r, ŝ; r�, ŝ�� = 
�r − r��
�ŝ − ŝ�� . �21�

Combining Eqs.�18� and �20�, we find that the pressure is
given by

p�r� =
i��S0

4�cs
2 � d3r�d2s�G�r,r��G�r�, ŝ�; r1, ŝ1��a�r�� .

�22�

FISHER, SCHISSLER, AND SCHOTLAND PHYSICAL REVIEW E 76, 036604 �2007�

036604-2



Equation �22� is a general expression for the pressure of a
photoacoustic wave. An important special case is obtained
when the DA to the RTE applies. Following �12�, the DA is
obtained by expanding the Green’s function G in angular
harmonics. To lowest order, it can be seen that

G�r, ŝ;r, ŝ�� =
c

4�
�1 + ��ŝ · �r��1 − ��ŝ� · �r��GD�r,r�� ,

�23�

where the transport mean free path ��=1/ ��a+�s�� with �s�
= �1−g��s, g being the anisotropy of the phase function f .
The diffusion Green’s function GD�r ,r�� satisfies the equa-
tion

− D�2GD�r,r�� + � − i��GD�r,r�� = 
�r − r�� , �24�

where the diffusion coefficient D=1/3c�� and =c�a. The
diffusion Green’s function also satisfies the boundary condi-
tion

GD�r,r�� + �n̂ · �GD�r,r�� = 0, r,r� � �� , �25�

where � is the extrapolation length �10�. The DA is valid
when ��
�GD
�GD and breaks down in optically thin lay-
ers; in weakly scattering or strongly absorbing media, that is
with �s��a; and near boundaries. One or more of these
conditions are often met in biomedical applications.

Within the accuracy of the DA, Eq. �22� becomes

p�r� =
i��S0

4�cs
2 �1 −

��

�
�� d3r�G�r,r��GD�r�,r1��r�� ,

�26�

where we have made use of the boundary condition Eq. �25�
and have assumed that the source is oriented in the inward
normal direction. In the case of an infinite medium, the dif-
fusion Green’s function does not obey the boundary condi-
tion Eq. �25�, but instead vanishes at infinity. Thus the gra-
dient terms in Eq. �23� are small and the term in parentheses
on the right-hand side of Eq. �26� does not appear.

III. POINT-ABSORBER MODEL

In this section we consider the propagation of diffuse light
in the presence of a small absorbing object. The goal is to
compute the diffusion Green’s function GD. As shown in
�12�, GD satisfies the integral equation

GD�r,r�� = GD
�0��r,r�� −� d3r�GD

�0��r,r��1�r��GD�r�,r�� .

�27�

Here GD
�0� is the Green’s function for a homogeneous medium

with absorption 0 and 1=−0. The unperturbed Green’s
function GD

�0� satisfies Eq. �24� with =0 and obeys the
boundary condition Eq. �25�. In an infinite medium, GD

�0� is
given by the expression

GD
�0��r,r�� =

1

4�D

e−k
r−r�



r − r�

, �28�

where the diffuse wave number is defined by k
=��0− i�� /D. In a semi-infinite medium, corresponding to
the half-space z�0, it can be seen �12� that GD

�0� can be
expanded into two-dimensional plane waves,

GD
�0��r,r�� =

1

2D�2��2� d2q

Q�q�
eiq·��−���

��e−Q�q�
z−z�
 +
Q�q�� − 1

Q�q�� + 1
e−Q�q�
z+z�
� ,

�29�

where we have used the notation r= �� ,z� and Q�q�
=�q2+k2.

Consider an absorbing object whose size is small com-
pared to the decay length 1/k. Suppose that the object is
embedded in a homogeneous medium with absorption 0.
Then the total absorption of the medium is taken to be

�r� = 0 + 
0V
�r − r0� , �30�

where r0 denotes the position of the absorber, 
0 is its ab-
sorption, and V is its volume. Equation �30� defines the
point-absorber model. Inserting Eq. �30� into the integral
equation �27�, we find that the diffusion Green’s function
satisfies an algebraic equation of the form

GD�r,r�� = GD
�0��r,r�� − 
0VGD

�0��r,r0�GD�r0,r�� . �31�

Equation �31� can be rewritten in the form of the geometric
series

GD�r,r�� = GD
�0��r,r�� − 
0VGD

�0��r,r0�GD
�0��r0,r��

+ �
0V�2GD
�0��r,r0�GD

�0��r0,r0�GD
�0��r0,r�� + ¯ ,

�32�

which can be summed with the result

GD�r,r�� = GD
�0��r,r�� − 
VGD

�0��r,r0�GD
�0��r0,r�� . �33�

Here the renormalized absorption 
 is defined by the ex-
pression


 =

0

1 + 
0VGD
�0��r0,r0�

. �34�

Equation �33� is an exact result for the Green’s function of
the point-absorber model.

The physical interpretation of the renormalized absorption
requires some care. The quantity GD

�0��r0 ,r0� is divergent and
thus 
 vanishes. In order to remedy the situation, it is nec-
essary to regularize the divergence. For the case of an infinite
medium, we examine the behavior of GD

�0��r ,r�� for small

r−r�
,

PHOTOACOUSTIC EFFECT FOR MULTIPLY SCATTERED LIGHT PHYSICAL REVIEW E 76, 036604 �2007�

036604-3



GD
�0��r,r�� =

1

4�D
r − r�

−

k

4�D
+ O�
r − r�
� . �35�

It can be seen that the singular part of GD
�0� is isolated in the

first term above. Now, consider the Fourier integral represen-
tation

1


r − r�

=� d3k

�2��3

eik·�r−r��

k2 . �36�

We introduce a high-frequency cutoff on the wave-vector
integration to regularize the divergence,

GD
�0��r0,r0� =

1

4�D
�


k
��2�/��

d3k

�2��3

1

k2 −
k

4�D

=
1

4�D
� 1

��
− k� , �37�

where � defines the cutoff. We may identify � with the
linear size of the absorber and thus k��1. Note that
GD

�0��r0 ,r0� does not depend upon r0, as may be expected
from translational invariance.

For the case of a semi-infinite medium, we must also
regularize GD

�0��r0 ,r0�. Here, we note that the first term of Eq.
�29� corresponds to GD

�0� for an infinite medium. Thus,

GD
�0��r0,r0� =

1

4�D
� 1

��
− k�

+
1

4�D
�

0

�

dq
q

Q�q�
Q�q�� − 1

Q�q�� + 1
e−2Q�q�z0

=
1

4�D
� 1

��
− k +

1

2z0
e−2kz0

−
2

�
E1�2�k + 1/��z0�� , �38�

where E1 denotes the exponential integral defined by

E1�z� = �
z

� e−t

t
dt . �39�

Using the asymptotic expansion

E1�z� �
e−z

z
1 −

1

z
+ O� 1

z2�� , �40�

we obtain

GD
�0��r0,r0� =

1

4�D
 1

��
− k +

1

z0
e−2kz0�1

2
−

1

k�
�� + O� 1

z0
2� .

�41�

In contrast to the case of an infinite medium, GD
�0��r0 ,r0�

depends upon z0, as follows from the broken translational
invariance in the z direction.

IV. PHOTOACOUSTIC EFFECT
WITH A SMALL ABSORBER

In this section we consider the photoacoustic effect in the
context of the point-absorber model. We treat separately the
cases of infinite and semi-infinite media. We assume that the
speed of sound is constant everywhere in space or in each
half-space, respectively.

A. Infinite medium

We consider an infinite homogeneous medium with
acoustic wave number k0. The Green’s function for the wave
equation �17�, which behaves as an outgoing wave, is given
by

G�r,r�� = −
1

4�

eik0
r−r�



r − r�

. �42�

Using Eq. �26�, we see that the pressure due to the presence
of a small absorber is given by the expression

p�r� =
i��S0

4�cs
2 � d3r�G�r,r��GD�r�,r1��r�� , �43�

where  is defined by Eq. �30� and GD is given by Eqs. �33�
and �28�. The integral is readily evaluated and consists of a
sum of four terms,

p�r� =
i��S0

4�cs
2 �p1�r� + p2�r� + p3�r� + p4�r�� . �44�

Here

p1�r� = −
1

4�

0

Dk0
2 + 0 − i�

� eik0
r−r1



r − r1

−

e−k
r−r1



r − r1
 � , �45�

p2�r� = −

0V

�4��2D

eik0
r−r0



r − r0

e−k
r0−r1



r0 − r1

, �46�

p3�r� =
0
V

4�D�Dk0
2 + 0 − i��

e−k
r1−r0



r1 − r0
 � eik0
r−r0



r − r0

−

e−k
r−r0



r − r0
 � ,

�47�

p4�r� =

0
V2

�4��3D2

e−k
r1−r0



r1 − r0

eik0
r−r0



r − r0

� 1

��
− k� . �48�

Evidently, p1 corresponds to the pressure for a homogeneous
medium with absorption 0; the remaining three terms result
from the presence of the absorbing object.

It is instructive to consider the asymptotic behavior of p1
in the far zone. It can be seen that the far-field pressure
behaves as an outgoing spherical wave of the form

p1 �
eik0r

r
A , �49�

where A is defined by

FISHER, SCHISSLER, AND SCHOTLAND PHYSICAL REVIEW E 76, 036604 �2007�

036604-4



A = −
i��S0

�4�cs�2

0

Dk0
2 + 0 − i�

e−ik0r̂·r1. �50�

Using this result, we find that the angular distribution of
radiated power is given by the expression

dP

d�
=

1

2�0cs

A
2 =

0
2�2S0

2

2�0cs�4�cs�4

�2

�Dk0
2 + 0

2�2 + �2 . �51�

We note that the radiated power is isotropic, vanishes at �
=0 and has a maximum at �max=cs

�0 /D. We further note
that dP /d��1/�2 for large �, consistent with the expected
breakdown of the DA at high frequencies.

We now estimate the sensitivity of the photoacoustic pres-
sure to the presence of a small absorbing object and the
corresponding image resolution. We work in the geometry in
which the source and the absorber are collinear. The speed of
sound is cs=1.5�105 cm s−1, the background absorption
0=1 ns−1, and the diffusion coefficient D=1 cm2 ns−1.
This choice of parameters is typical for breast tissue in the
near infrared. Figure 1 illustrates the frequency dependence
of dP /d� which shows a maximum at �max	200 kHz. At
this frequency, the resolution is quite low, as can be seen by
examining the quantity 
p
. In Fig. 2, 
p
 is plotted along the
line y=0 in the z=0 plane when the source is located at the
origin, the absorber is located at a depth z0=5 cm, the con-
trast 
0 /0=3, and the linear size of the absorber is �

=0.5 cm. The resolution can be identified with the full width
at half-maximum �FWHM� of this curve. At a frequency of
� /2�=200 kHz the FHWM	1 cm, while at � /2�
=1 MHz the FWHM	0.2 cm. Evidently, at higher fre-
quencies the resolution increases, as may be expected. Next,
we define the relative change in pressure due to the object

� =

p − p1



p1

. �52�

Note that this quantity is directly measurable in an experi-
ment which utilizes a piezoelectric ultrasound transducer
�13�. In Fig. 3, the parameter � is plotted as a function of the
distance z0 of the absorber from the source and a collinear
detector for different values of the absorption contrast

0 /0 at the frequency � /2�=1 MHz. The quantity � can
be interpreted as the precision with which the pressure p can
be measured relative to the background pressure p1. For a
fixed value of �, we can then estimate the threshold for the
detection of the absorbing object; if � exceeds the experi-
mental noise level we will say that an object is detectable.
Note that we have not considered the absolute sensitivity of
any particular instrument; this is beyond the scope of the
present work. For example, if we set �=.01, then it is pos-
sible to detect the object at a depth of 4 cm with a contrast

0 /0=3. We note that this level of contrast is reasonable
for a breast tumor. At lower contrast, the depth at which the
object can be detected decreases, while at higher contrast, the
depth increases.

B. Semi-infinite medium

We consider a planar interface between two homogeneous
media. Medium 1 corresponds to the half-space z�0 and has
acoustic wave number k1. Medium 2 is the half-space z�0.
It is filled with a highly scattering medium with acoustic
wave number k2 and contains a small absorbing object. In
medium 1 the Green’s function for the wave equation �17�
obeys the equation

�2G1�r,r�� + k1
2G1�r,r�� = 0, �53�

while in medium 2 it obeys

0 0.2 0.4 0.6 0.8 1
Ω �MHz�

0

0.1

0.2

0.3

0.4

0.5

dP

d�

FIG. 1. Plot of the angular distribution of radiated power �in
arbitrary units� as a function of frequency.

�2 �1 0 1 2
x �cm�

0

0.1

0.2

0.3

0.4

0.5

�p
�

FIG. 2. 
p
 �in arbitrary units� as a function of x in an infinite
medium for different frequencies � /2�=200 kHz �dashed line�
and � /2�=1 MHz �solid line�.

2 2.5 3 3.5 4 4.5 5
z0 �cm�

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

�

FIG. 3. �Color online� � as a function of z0 in an infinite me-
dium for different values of the contrast 
0 /0=1 �— — —�, 2 �–
– –�, and 3 �- - -�.
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�2G2�r,r�� + k2
2G2�r,r�� = 
�r − r�� , �54�

where z��0 and z�0. In addition, the Green’s function
must obey the boundary conditions


G1
z=0 = 
G2
z=0, �55�

1

�1
� �G1

�z
�

z=0
=

1

�2
� �G2

�z
�

z=0
, �56�

where �1 and �2 denote the mass densities in medium 1 and
medium 2, respectively. By expanding G1 and G2 into plane-
wave modes, it can be seen that

G1�r,r�� = −
i

2�2��2� d2q

k2z�q�
T�q�exp�iq · �� − ���

+ ik2z�q�z� − ik1z�q�z� �57�

and

G2�r,r�� = −
i

2�2��2� d2q

k2z�q�
eiq·��−����eik2z�q�
z−z�


+ R�q�eik2z�q��z+z��� . �58�

Here R and T are the reflection and transmission coefficients
which are given by the expressions

R�q� =
k2z�q� − �21k1z�q�
k2z�q� + �21k1z�q�

, �59�

T�q� =
2k2z�q�

k2z�q� + �21k1z�q�
, �60�

where �21=�2 /�1 and knz�q�=�kn
2−q2 for n=1,2.

We can now calculate the acoustic pressure due to the
presence of a small absorber. We assume that the absorber is
located in medium 2 and that the source and detector are
placed on the z=0 plane with coordinates r= �� ,0� and r1

= ��1 ,0�. To proceed, we make use of Eq. �26� which be-
comes

p�r� =
i��S0

4�cs2
2 �1 −

��

�
�� d3r�G1�r,r��GD�r�,r1��r�� ,

�61�

where  is defined by Eq. �30� and GD is given by Eqs.�33�
and �38�. Carrying out the integral, we find that p can be
expressed as a sum of four terms,

p�r� =
i��S0

4�cs2
2 �1 −

��

�
��p1�r� + p2�r� + p3�r� + p4�r�� ,

�62�

where

p1�r� = −
i0�

4�D
�

0

� dq

k2z�q�
qT�q�J0�q
� − �1
�

�Q�q� − ik2z�q���Q�q�� + 1�
,

�63�

p2�r� =
0
V

D�k2 + k2
2�

GD
�0��r1,r0��G1�r,r0� +

D

2
GD

�0��r,r0�

−
i

8�
�

0

� dq

k2z�q�
qT�q�J0�q
�

− �1
�
Q�q�� − 1

Q�q�� + 1
e−Q�q�z0� , �64�

p3�r� = 
0VGD
�0��r1,r0�G1�r0,r� , �65�

p4�r� = − 
0
V2GD
�0��r1,r0�GD

�0��r0,r0�G1�r0,r� . �66�

We note that in the above formula, p1 corresponds to the
pressure that would be observed in the absence of the ab-
sorber. We also note that the term GD

�0��r0 ,r0�, which appears
in the expression for p4, must be regularized as in Eq. �38�.

We now use the above result to estimate the detection
threshold for a small absorbing inhomogeneity. As before,
we consider the geometry in which the source and detector
positions coincide and are collinear with the point absorber.
Medium 1 is taken to have the acoustic properties of air at
STP with speed of sound cs1=3.4�104 cm s−1 and density
�1=1.2�10−3 g cm−3. To account for absorption of the
acoustic wave, a small imaginary part is added to the wave
number k1,

k1 =
�

cs1
�1 + i

�

2�0
� . �67�

Note that in air �0=3�108 s−1. In medium 2 the speed of
sound is taken to be cs2=1.5�105 cm s−1, the background
absorption 0=1 ns−1, the diffusion coefficient D
=1 cm2 ns−1, the density �2=1 g cm−3, and the extrapola-
tion length �=0.1 cm. The attenuation of the pressure wave
in water at a frequency of 1 MHz is extremely small ��0

	1012 s−1� and will be neglected.
Figure 4 shows a plot of � as a function of the distance z0

for different values of the absorption contrast 
0 /0. The
absorber is taken to have linear size �=0.5 cm. We see that
for a noise level �=.01, it is possible to detect the object at
a depth of 2.5 cm with a contrast 
0 /0=3. We note that

2 2.5 3 3.5 4 4.5 5
z0 �cm�

0

0.005

0.01

0.015

0.02

�

FIG. 4. �Color online� � as a function of z0 in a semi-infinite
medium for different values of the contrast 
0 /0=1 �— — —�, 2
�– – –�, and 3 �- - -�.
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this depth is smaller than the corresponding estimate in the
case of an infinite medium, as may be expected due to ab-
sorption of light and ultrasound at the boundary.

V. MULTIPLE ABSORBERS

In this section we generalize our previous results to the
case of a collection of point absorbers. We begin by deriving
the appropriate diffusion Green’s function and then use this
result to calculate the acoustic pressure.

A. Diffusion Green’s function

We consider a homogeneous medium containing a collec-
tion of N point absorbers with positions R1 , . . . , RN, absorp-
tions 
1 , . . . , 
N, and volumes V1 , . . . , VN. The total ab-
sorption of the medium is given by

�r� = 0 + �
i


iVi
�r − Ri� , �68�

where 0 is the background absorption. For convenience,
each absorber is assumed to have a distinct volume, even
though only the product of 
i and Vi arises in Eq. �68�.
Inserting the above expression for  into the integral equa-
tion �27�, we find that the diffusion Green’s function obeys
the relation

GD�r,r�� = GD
�0��r,r�� − �

i

GD
�0��r,Ri�
iViGD�Ri,r�� .

�69�

Evidently, Eq. �69� determines GD self-consistently. This ob-
servation leads to a system of algebraic equations for
GD�Ri ,r�,

�
j

MijGD�R j,r� = GD
�0��Ri,r� , �70�

where

Mij = 
ij + GD
�0��Ri,R j�
 jVj . �71�

Solving Eq. �70� for GD�Ri ,r� we obtain

GD�r,r�� = GD
�0��r,r�� − �

i,j
GD

�0��r,Ri�TijGD
�0��R j,r�� ,

�72�

where Tij =
iViMij
−1 is the analog of the renormalized ab-

sorption. Note that as in Eqs.�37� and �38�, the diagonal el-
ements of M need to be properly regularized. If the absorbers
are well separated, such that k
Ri−R j
�1, then Mij =
ij�1
+
iViGD

�0��Ri ,Ri�� and

GD�r,r�� = GD
�0��r,r�� − �

i

GD
�0��r,Ri�


iVi

1 + 
iViGD
�0��Ri,Ri�

�GD
�0��Ri,r�� . �73�

In this case, GD corresponds to the superposition of the
Green’s functions for N isolated point absorbers. However, if
the absorbers are sufficiently close to interact, then M de-

pends in a nontrivial way upon the positions of all the ab-
sorbers in the system.

B. Photoacoustic effect with multiple absorbers

We first consider the case of an infinite medium. The pres-
sure is obtained by evaluating the integral Eq. �43� with G
given by Eq. �42�, GD by Eq. �72� and  by Eq. �68�. The
result is of the form Eq. �44� with p1�r� given by Eq. �45�
and

p2�r� = −
1

�4��2D
�

i


iVi
eik0
r−Ri



r − Ri

e−k
r1−Ri



r1 − Ri

, �74�

p3�r� =
0

4�D�Dk0
2 + 0 − i���i,j Tij

e−k
r1−Rj



r1 − R j

� eik0
r−Ri



r − Ri


−
e−k
r−Ri



r − Ri

� , �75�

p4�r� =
1

�4��3D2 �
i,j,k

�
kVkTij
e−k
r1−Rj



r1 − R j

eik0
r−Rk



r − Rk

e−k
Ri−Rk



Ri − Rk


+
1

�4��3D2�
i,j


iViTij
e−k
r1−Rj



r1 − R j

eik0
r−Ri



r − Ri

� 1

��
− k� ,

�76�

where the prime on the summation excludes terms with i
=k and the index k is not to be confused with the wave
number.

Next we consider the case of a semi-infinite medium. The
pressure is obtained by evaluating the integral Eq. �61� with
GD given by Eq. �72� and  by Eq. �68�. The result is of the
form Eq. �62� with p1�r� given by Eq. �63� and

FIG. 5. Illustrating the geometry. The source and detector are
scanned on the z=0 plane and the absorbers are located on the plane
z=z0.
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p2�r� =
0
V

D�k2 + k2
2��i,j TijGD

�0��r1,R j��G1�r,Ri� +
D

2
GD

�0��r,Ri�

−
i

8�
�

0

� dq

k2z�q�
qT�q�J0�q
� − �1
�

�
Q�q�� − 1

Q�q�� + 1
e−Q�q�z0� , �77�

p3�r� = �
i


iViG1�r,Ri�GD
�0��Ri,r1� , �78�

p4�r� = − �
i,j,k


kVkTijG1�r,Rk�GD
�0��Ri,Rk�GD

�0��r1,R j� .

�79�

We illustrate the above results for the case of a pair of
identical absorbers, as shown in Fig. 5. We take the optical
properties of the medium and of the absorbers to be as in Fig.
3. The source is located at the origin and the absorbers are
located on the plane z=z0 with positions R1= �1,0 ,z0� and
R2= �−1,0 ,z0�, where all lengths are measured in centime-
ters. Figure 6 shows density plots of the relative pressure

p− p1
 on the plane z=0 for different depths z0

=0.1, 0.5, 1.0, 2.0, 4.0, 6.0 cm. It can be seen that
when the absorbers are close to the z=0 plane that they are
well resolved and that the resolution decreases at greater
depths. Note that the FWHM of the pressure along the line
y=0 �for either absorber� is 4 mm for z0=1 cm, which can
be taken as a measure of the achievable resolution at that
depth.

VI. CONCLUSIONS

We have considered the photoacoustic effect for multiply
scattered light in an absorbing random medium as described
by the diffusion approximation to the radiative transport
equation. The theory was specialized to the case of one or
more small absorbing inhomogeneities located in either an
infinite or semi-infinite medium. Several comments on our
results are necessary. First, the detection thresholds and reso-
lution limits we have obtained must be considered to be best-
case estimates. We have not directly considered the effects of
systematic errors in positioning of the source and detector or
other experimental parameters. Second, we have not ad-
dressed the problem of characterization of the absorbers
given realistic assumptions about experimental noise and
systematic errors. That is, although in principle it may be
possible to detect the presence of an absorbing object, it may
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FIG. 6. Density plots of the relative pressure 
p− p1
 on the plane z=0. The depth of the absorbers is indicated for each plot. The images
are displayed on a linear gray scale and each plot is normalized to its own maximum.
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not always be possible to accurately estimate its position,
size, and contrast. Third, when the system is not known to
consist of isolated inhomogeneities, it is of interest to re-
cover the spatial dependence of the absorption. This inverse
problem has been studied by previous investigators, but
without accounting for multiple scattering of the illuminating
field or the influence of boundaries �14–20�. Evidently, the
importance of such effects may be investigated by using the
methods developed in this paper to test image reconstruction
algorithms. Finally, it would be of interest to consider the
photoacoustic effect in a medium where the DA breaks
down. In principle, this situation could be analyzed since the

necessary Green’s functions for the RTE are known for both
homogeneous media �21� and for collections of point absorb-
ers �22�. These and other topics will be the subjects of future
works.
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